Применение математических моделей для прогнозирования  и планирования развития систем

 А.В. Габалин,
н. с.,
Valent@ipu.rssi.ru,
ИПУ РАН,
г. Москва

Моделирование применяется в случае, если эксперименты с реальными объектами, системами невозможны или слишком дороги. Главное отличие моделирования от других методов изучения сложных систем – возможность оптимизации системы до её реализации.

Процесс моделирования состоит из трёх стадий: формализации (переход от реального объекта к модели), моделирования (анализ и оптимизацию модели, нахождение решения), интерпретации (перевод результатов моделирования в область реальности).

Традиционно математические модели разделяют на аналитические и имитационные. Аналитические модели представляют собой уравнения или системы уравнений, записанные в виде алгебраических, интегральных, дифференциальных, конечно-разностных и иных соотношений и логических условий. Они записаны и решены в буквенном виде. Отсюда и происходит их название. Аналитическая модель, как правило, статическая. Аналитическое представление подходит лишь для очень простых и сильно идеализированных задач и объектов, которые, как правило, имеют мало общего с реальной (сложной) действительностью, но обладают высокой общностью.

Данный тип моделей обычно применяют для описания фундаментальных свойств объектов, так как фундамент прост по своей сути. Сложные объекты редко удаётся описать аналитически.

Альтернативой аналитическим моделям являются имитационные модели (динамические). Основное отличие имитационных моделей от аналитических состоит в том, что вместо аналитического описания взаимосвязей между входами и выходами исследуемой системы строят алгоритм, отображающий последовательность развития процессов внутри исследуемого объекта, а затем «проигрывают» поведение объекта на компьютере. К имитационным моделям прибегают тогда, когда объект моделирования настолько сложен, что адекватно описать его поведение математическими уравнениями невозможно или затруднительно. Имитационное моделирование позволяет разлагать большую модель на части (объекты, «кусочки»), которыми можно оперировать по отдельности, создавая другие, более простые или, наоборот, более сложные модели.

Таким образом, основным преимуществом имитационного моделирования по сравнению с аналитическим является возможность решения более сложных задач, так как результатом процесса имитации модели будет значение целевой функции, соответствующее данным входным значениям переменных. Еще в недалеком прошлом имитационные модели считались методом «второго сорта», которые применялись только тогда, когда было невозможно применять аналитические. И действительно, если уже построена аналитическая модель, то обычно с помощью того или иного метода оптимизации можно найти оптимальное детерминированное решение. Однако на сегодняшний день многие аналитические модели (в частности, модели математического программирования) имеют ограниченное применение на практике. В том случае, когда аналитические модели невозможно применять, аналитики применяют имитационные модели. Имитационные модели считаются одними из наиболее перспективных при решении задач управления экономическими объектами. В общем случае, для сложных проблем, где время и динамика важны, имитационное модели считаются одним из самых популярных и полезных методов количественного анализа:

1.   Аналитические модели часто трудны для формализации и построения, а иногда их вообще невозможно построить. Любая аналитическая модель имеет свои «затрудняющие» факторы, которые зависят от специфики данной модели.

2.   Аналитические модели обычно дают среднестатистические или стационарные (долговременные) решения. На практике часто важно именно нестационарное поведение системы или ее характеристики на коротком временном интервале, что не дает возможности получить «средние» значения.

3.   Для имитационного моделирования можно использовать широкий круг программного обеспечения специально разработанных для создания имитационных моделей.

Как аналитические, так и имитационные модели можно использовать для решения задач, включающих случайные события. При этом часто аналитические модели предпочтительнее имитационных по следующим причинам:

1.   Имитационное моделирование требует проведения большого числа испытаний, чтобы получить хорошую оценку значения целевой функции для каждого отдельного решения.

2.   С помощью аналитической модели можно получить оптимальное решение.

3.   Решение задачи с помощью имитационного моделирования требует оценить большое количество возможных альтернативных решений.

К достоинствам имитационного моделирования по сравнению с аналитическими моделями можно отнести:

·      Возможность многократного измерения интересующих нас параметров модели.

·      Возможность исследования сложных сценариев поведения системы.

В настоящее время во многих случаях имитационные модели строятся не вместо аналитических, а параллельно с ними, поскольку они относительно просты для создания и позволяют исследовать такие параметры реальных систем, которые невозможно отобразить в аналитических моделях. Комбинированное использование аналитических и имитационных методов позволяет сочетать достоинства обоих подходов. При построении комбинированных (аналитико-имитационных) моделей производится предварительная декомпозиция процесса функционирования объекта на составляющие подпроцессы, и для тех из них, где это возможно, используются аналитические модели, а для остальных подпроцессов строятся имитационные модели. Такой подход дает возможность охватить качественно новые классы систем, которые не могут быть исследованы с использованием аналитического или имитационного моделирования в отдельности.

На основе проведенных исследований и обобщения опыта решения практических задач прогнозирования и планирования развития систем в ИПУ РАН  был предложен подход к решению задачи, базирующийся на построении комплекса взаимосвязанных оптимизационных (ОМ), имитационных (ИМ) и расчетно-анализирующих (АН) моделей  и корректирующих (КОР) процедур.

При этом ограничения и условия развития систем, задаваемые в аналитическом виде, учитываются в рамках соответствующих моделей оптимизации. Алгоритмически задаваемые ограничения учитываются с помощью имитационных моделей функционирования элементов системы. Расчетные модели обеспечивают формирование и оценку экономических и тактико-технических показателей развития и функционирования системы, на основе которых организуется процедура взаимодействия моделей комплекса.

На рис.1 дана общая схема построения комплексов оптимизационно-имитационных моделей, отображающих различные методы оптимизации функционирования систем. Задачи развития систем можно разбить на следующие классы:

·      целевая функция и область ограничений заданы аналитически;

·      целевая функция задана аналитически, область ограничения задана алгоритмически;

·      целевая функция задана аналитически, область ограничения задана алгоритмически и аналитически;

·      целевая функция задана алгоритмически, область ограничения задана  аналитически;

·      целевая функция и область ограничений заданных алгоритмически;

·      целевая функция задана алгоритмически, область ограничения задана алгоритмически и аналитически.

Для решения задач первого класса используются комплексы моделей 1, второго класса – комплексы 3, третьего класса – комплексы 3, 4, четвертого класса – комплексы 2, 5, 6, пятого класса – комплексы 2, 5, 6, шестого класса – комплексы 2, 5, 6. Более подробно данные методы изложены в [1].

Имитационные модели в последнее время все чаще применяются для прогнозирования и планирования будущего развития производственных систем на стадии решения вопроса инвестирования проекта, создания бизнес-плана особенно в области машиностроения и металлургии. Большую роль в проведении имитационного эксперимента играет выбор системы моделирования, который позволяет, во-первых, описать состав, структуру и процесс функционирования моделируемой системы, а во-вторых, значительно сократить затраты на построение модели путем использования стандартных функций имитационного языка. Долгожителем в мире систем имитационного моделирования является широко известный и распространенный язык для моделирования дискретных систем — GРSS. Появившийся впервые еще в 1961 году, он выдержал множество модификаций для различных операционных систем и ЭВМ и в то же время сохранил почти неизменными внутреннюю организацию и основные блоки. Язык GPSS можно отнести к языкам высокого уровня. В силу этого он имеет довольно слабые алгоритмические возможности. Для устранения этого недостатка в систему GPSS World добавлен PLUS –язык низкого уровня. Выражения, процедуры и эксперименты PLUS можно использовать в GPSS-моделях.

Система GPSS World обеспечивает два вида автоматически проводимых экспериментов: разработанные для пользователя и  разработанные пользователем. PLUS –язык позволяет разрабатывать пользовательские эксперименты любой сложности.

GPSS World – это прямое развитие языка моделирования GPSS/РС, одной из первых реализаций GPSS для персональных компьютеров. В настоящее время версия GPSS World для ОС Windows имеет расширенные возможности, включая пользовательскую среду с интегрированными функциями работы с Интернет. GPSS World разработан для оперативного получения достоверных результатов с наименьшими усилиями. В соответствии с этими целями в GPSS World хорошо проработана визуализация процесса моделирования, а также встроены элементы статистической обработки данных. Сильная сторона GPSS World – это его прозрачность для пользователя. GPSS World является объектно-ориентированным языком. Его возможности визуального представления информации позволяют наблюдать и фиксировать внутренние механизмы функционирования моделей. Его интерактивность позволяет одновременно исследовать и управлять процессами моделирования. С помощью встроенных средств анализа данных можно легко вычислить доверительные интервалы и провести дисперсионный анализ. Кроме того, теперь есть возможность автоматически создавать и выполнять сложные отсеивающие и оптимизирующие эксперименты.

Последняя версия GPSS World  включает в себя массу нововведений, позволяющих проводить более эффективные исследования и сделать работу с системой максимально простой и удобной для пользователя:

·      Высокоэффективный транслятор является частью программы GPSS World, которая создает объекты “Процесс моделирования”. Перед включением в объект “Процесс моделирования” все операторы модели проходят трансляцию. Точно так же интерактивные операторы транслируются в глобальной области видимости прежде, чем они будут переданы существующему объекту “Процесс моделирования”.

·      На уровне интерфейса GPSS World представляет собой реализацию архитектуры “документ-вид”, общей для всех приложений операционной системы Windows. Объекты могут быть открыты в нескольких окнах, изменены и сохранены на постоянных носителях информации. Привычное меню главного окна и блокировка недоступных команд меню, не отвлекая внимания, направляет пользователя к конечной цели. GPSS World был разработан с целью достичь тесной интерактивности даже в многозадачной среде с использованием виртуальной памяти.

·      Многопоточная архитектура GPSS World позволяет совместно запускать несколько процессов моделирования и экспериментов. Одновременно выполняются не только обновление окон, пользовательский ввод, дисковый ввод-вывод, печать и процесс моделирования, но также в одно и то же время может быть запущено любое количество процессов моделирования.

·      Процессы моделирования непосредственно не ограничиваются размером физической памяти с произвольным доступом (ОЗУ), в которой выполняется объект “Процесс моделирования”. Используя механизм виртуальной памяти, модели могут достигать размера до гигабайта. Количество объектов также ограничивается только обеспечиваемым размером файла подкачки. Для достижения оптимальной производительности необходимо использовать значительный объем реальной памяти. Выделение и управление памятью для объектов происходит невидимо для пользователя. Объекты автоматически создаются до тех пор, пока не потребуется дополнительная информация.

·      GPSS World поддерживает высокий уровень интерактивности даже во время процесса моделирования. Используя команды главного меню окна модели, ускоряющие клавиши или настройки модели, закрепляя за функциональными клавишами собственные команды, вы можете передавать существующему объекту “Процесс моделирования” любой оператор. Вы можете использовать диалоговое окно для ввода операторов, отсутствующих в выпадающем меню, а с помощью специальной команды вы можете посылать процессу моделирования интерактивные операторы любой сложности.

·      GPSS World отличается высоким уровнем визуализации выполняющегося процесса моделирования. Для наблюдения и взаимодействия с процессом моделирования используются двадцать различных окон, соответствующих большей части объектов GPSS. Для получения, сохранения и печати визуального представления состояния процесса моделирования не требуется дополнительных усилий, кроме операций с окнами.

·      В GPSS World существует ряд анимационных возможностей. Уровень их реализма изменяется от абстрактной визуализации, не требующей никаких усилий, до высоко реалистических динамических изображений, включающих в себя сложные элементы, созданные пользователем.

За последние десятилетия в ИПУ РАН успешно решались задачи построения имитационных и оптимизационных моделей различных производственных, транспортных систем и систем специального назначения с помощью систем GPSS и SLAM.

В ИПУ РАН создана универсальная система моделирования дискретных систем (УСМ) для автоматизированного проведения имитационных экспериментов по развязке «узких мест» проектируемых систем на базе GPSS WORLD. Исходные данные (шаблоны), различные варианты режимов и настроек экспериментов выполнены в виде таблиц.

Программы создания и работы с базой данных, выбора характеристик и режимов моделирования и исходных данных через различные меню, настройки имитационных моделей, графического отображения результатов выполнены в среде  языка Pascal.

Исходная имитационная модель написана на GPSS. УСМ работает с уже готовой имитационной программой при различных вариантах исходных данных.

УСМ внедрена при проектировании ряда систем [2-4], в том числе при оптимизации функционирования и развития структуры космодрома “Байконур”, а также - в учебный процесс Московского Авиационного института.

 

рис 1. Схема комплексов моделей

Литература

1.   Цвиркун А.Д., Акинфиев В.К., Филиппов В.А. Имитационное моделирование в задачах синтеза структуры сложных систем. М.: Наука, 1985.  

2.   Габалин А.В. Оптимизационно-имитационный подход в задачах анализа и синтеза структуры распределенных систем обработки информации. Труды института. Том XXVI. М.: Институт проблем управления, 2005.

3.   Габалин А.В Вопросы оптимизации структуры распределённых систем обработки информации. Журнал “Прикладная информатика” №6 2007. 

4.   Габалин А.В. Комплексный подход для решения задач построения систем обработки информации.  III  Всероссийская научно-практическая конференция по имитационному моделированию и его применению в науке и промышленности  ”Имитационное моделирование. Теория и практика”  (ИММОД-2007). Санкт-Петербург, 2007.