Организация вычислений с целью оценки надёжности оборудования для управления физическими активами современных производств

В.П. Полетаев, доц., к.т.н., перв. проректор, taev@mh.vstu.edu.ru, Д.А. Богданов, ст. преп., ВоГУ, г. Вологда

Описана система информационной поддержки, позволяющая реализовать стратегию планирования технического обслуживания для объектов, у которых возможны отказы в процессе эксплуатации.

A system of information support that allows you to implement a strategy for scheduling maintenance to objects that have possible failures in the process of operation is described.

К числу приоритетных задач по повышению уровня безотказности оборудования относятся совершенствование методов анализа надежности [1-3], рациональное применение их результатов в действующем производстве. Данные методы имеют ограниченное применение для комплексных исследований состояния оборудования при эксплуатации. Это обусловлено тем, что оборудование, как сложная техническая система, функционирует непрерывно в обстановке измерения большого количества параметров при их частичном отсутствии или неопределенности. Учесть влияние того или иного входного параметра на возможность появления, характер и степень проявления как внезалных, так и износовых отказов и дефектов элементов оборудования в период длительной его эксплуатации существующими методами оперативно не представляется возможным [3,4].

В то же время решение проблем по выявлению и диагностированию неисправностей оборудования во избежание простоев производства, оптимизации затрат на ремонты также является достаточно актуальным [5,6].

К задачам технической прогностики относятся, например, задачи, связанные с определением срока службы объекта или с назначением периодичности его профилактических проверок и ремонтов. Эти задачи решаются путем определения возможных или вероятных эволюции состояния объекта, начинающихся в настоящий момент времени.

Решение задач прогнозирования весьма важно, в частности, для организации технического обслуживания объектов по состоянию (вместо обслуживания по срокам или по ресурсу). Хорошо организованное диагностическое обеспечение объекта с хранением всех предшествующих результатов диагностирования может дать полезную и объективную информацию, представляющую собой предысторию (динамику) развития процесса изменения технических характеристик объекта в прошлом, что может быть использовано для систематической коррекции прогноза и повышения его достоверности.

С целью практической реализации выполнения расчетов оптимальной периодичности профилактического обслуживания используются информационные средства. В результате разработана система информационной поддержки, позволяющая автоматизировать процесс интегрированной логистической поддержки жизненного цикла промышленного продукта [7].

Далее представлен пример работы системы определения оптимальной периодичности профилактических мероприятий [8].

Программный модуль Stat предназначен для статистической обработки баз данных. Основным назначением которого является автоматический подбор наилучшего уравнения нелинейной регрессии, подбор вида распределения, оценка соответствующих параметров и доверительных интервалов и т.д., а также возможность формирования и анализа подвыборок (групп), используя язык программирования Delphi.

В программе реализован импорт из текстовых файлов. Размер анализируемой матрицы данных не ограничен. Программа работает под Microsoft Windows, не требует установки и полностью переносима.

Последовательность работы с программой:

- 1. Открыть существующий файл с данными в формате (.dat) (Файл→Открыть таблицу) или импортировать текстовый файл (Файл→Импорт текста).
 - 2. При необходимости сформировать группы данных.
 - 4. Выбрать статистический/графический метод.
 - 5. Проанализировать результаты статистического анализа.

Пример работы программы по вводу статистических данных представлен на рисунках 1-6.

Про	ограмма для рас	чета			Marc South Str.
Файл	Статистика				
NF.	X1	*			
1	920	0			
2	1104				
3	1161				
4	1196				
5	1219				
6	1300				
7	1345				
8	1357				
9	1472				
10	1495				
11	1518				
2001	1222				

рис. 1 Окно выбора параметров

Модуль дает возможность выбора группы данных, количество интервалов, начальное и конечное значение интервала.

рис. 2 Окно выбора данных

Подпункт меню «Статистика» (рисунок 3) позволяет подобрать вид распределения (автоматическое определение вида наилучшего уравнения нелинейной регрессии между двумя переменными, ранжирование по типам распределений, оценка параметров и их доверительных интервалов), построить гистограмму, вычислить параметры распределения и рассчитать критерии согласия (критерий Пирсона, критерий Колмогорова).

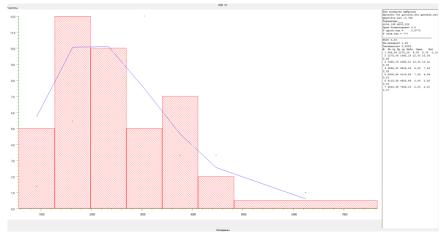


рис. 3 Окно подпункта меню «Статистика»

На основании полученных данных выбирается вид распределения и его параметры. Программа позволяет вводить параметры распределения вручную (рисунок 4).

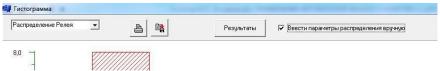


рис. 4 Окно ввода параметров распределения вручную

Диалоговое окно ввода параметров (рисунок 5) позволяет ввести параметры распределения вручную, задать диапазон поиска оптимальных значений времени технического обслуживания, шаг, а также ввести остальные параметры расчётов.

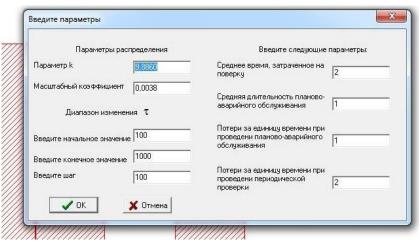


рис. 5 Диалоговое окно ввода параметров

Обработанные данные представляют собой таблицы и графики функции надежности, коэффициента технического использования и средних удельных затрат (рисунок 6-10), которые позволяют определить оптимальные значения, а также визуально оценить предложенные расчеты.

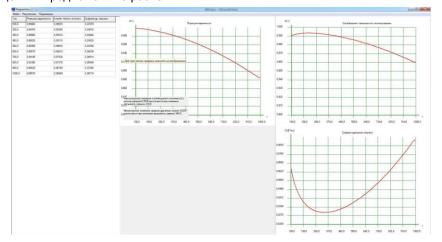


рис. 6 Окно вывода результатов расчётов

Файл Результаты Параметры							
Tau	Функция надежности	Коэфф. технич. использ.	Средние уд. затраты				
100,0	0,99860	0,98970	0,07078				
200,0	0,99470	0,99340	0,03816				
300,0	0,98860	0,99310	0,03046				
400,0	0,98020	0,99110	0,03020				
500,0	0,96950	0,98810	0,03390				
0,000	0,95670	0,98410	0,04038				
700,0	0,94180	0,97930	0,04914				
0,008	0,92490	0,97370	0,05994				
0,000	0,90620	0,96740	0,07265				
1000,0	0,88570	0,96040	0,08718				

рис. 7 Таблица расчётов

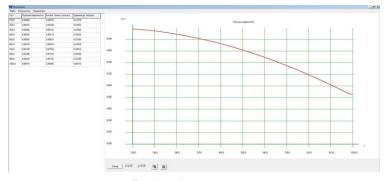


рис. 8 График функции надёжности

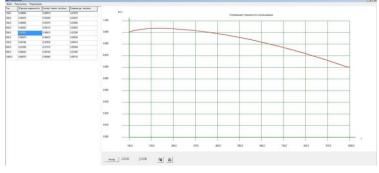


рис. 9 График коэффициента технического использования

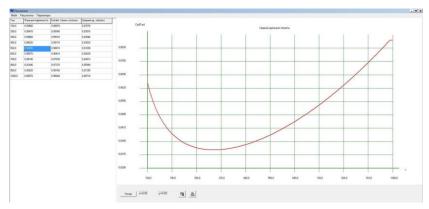


рис. 10 График средних удельных затрат

Комплекс состоит из набора модулей, в каждом из которых собраны тематически связные группы процедур. Модули могут работать как отдельно, так и в комплексе.

Рассмотренные автоматизированные средства оценки состояния оборудования могут быть использованы в качестве основы для разработки и внедрения автоматизированной системы планирования, обслуживания и проведения предупредительных ремонтных работ, интегрированной с существующими АСУ КП. В основе предлагаемой стратегии ремонтных работ по техническому состоянию оборудования предложен регламент выполнения ТОиР (периодичность и объемы) на основании данных по эксплуатации и отказам оборудования.

Литература

- 1. Полетаев, В.П. Моделирование и расчёт периодичности профилактического обслуживания технических систем по эмпирической функции надёжности / В.П. Полетаев, Д.А. Богданов // Конструкции из композиционных материалов. 2007. -№ 4. -C. 58-64
- 2. Полетаев, В.П. Управление периодичностью обслуживания технических систем при оптимизации коэффициента технического использования / В. П. Полетаев, Д. А. Богданов // Надежность и качество: труды Международного симпозиума: в 2-х т. / Пенза: Информационно-издательский центр ПГУ, 2007. -C. 237-239.
- 3. Специалисты об автоматизации взгляд изнутри // Control Engineering Россия. №5 (65), 2015. С. 20 24.
- 4. Полетаев, В.П. Оптимизация периодичности профилактики отказов / В.П. Полетаев, Д.А. Богданов // Труды Международного симпозиума Надежность и качество. 2015. Т. 1. С. 35 37.
- 5. Полетаев, В.П. Управление профилактическим обслуживанием при различном проявлении отказов технических систем / В.П. Полетаев, О.И. Микрюкова, Д.А. Богданов // Труды международной конференции «Системы проектирования, технологической подготовки производства и управления этапами жизненного цикла промышленного продукта». Москва: ИПУ РАН, 2011. С. 249-250.
- 6. Полетаев, В.П. Определение целевых функций критериев периодичности технического обслуживания / В.П. Полетаев, О.И. Микрюкова, Д.А. Богданов // Труды международной конференции «Системы проектирования, технологической подготовки производства и управления этапами жизненного цикла промышленного продукта». Москва: ИПУ РАН, 2012. С. 292-294.
- 7. Полетаев, В.П. Автоматизированная система оптимизации периодичности профилактики проявления отказов / В.П. Полетаев, Д.А. Богданов // Труды международной конференции «Системы проектирования, технологической подготовки производства и управления этапами жизненного цикла промышленного продукта». Москва: ИПУ РАН, 2015. С. 224-226.
- 8. Полетаев, В.П. Автоматизированная система реализации модели оценки технического состояния оборудования на основе линейной аппроксимации / В.П. Полетаев, Д.А. Богданов // Труды международной конференции «Системы проектирования, технологической подготовки производства и управления этапами жизненного цикла промышленного продукта». Москва: ИПУ РАН, 2016. С. 364-366.